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SUMMARY

An analysis is made of the stresses in the skin of an inflated
nonstretchable sphere during normal, nonrotating impact with a hard flat
surface, assuming infinite modulus of elasticity in the skin and infinite
propagation speed of stress waves. The analysis is further applied to the
study of the inflated sphere landing vehicle containing a payload suspended
at the center. Curves are presented showing the stress distributions
during impact for cases corresponding to those calculated in previous
reports in which the impact motion and payload landing performance
capabilitles of the landing vehlcle have been studied.

It is found, assuming the force from the payload~suspension cords to
be distributed continuously on the skin, that is, neglecting stress con-
centrations, that the skin stresses along a meridian are reduced by the
presence of the suspended payload during impact, but that the maximmum
values of skin stress normal to a meridian are little affected.

INTRODUCTION

The use of an inflated sphere with a centrally supported payload
package as a device for cushioning the high-speed impact of a payload has
been studied in references 1 to 3. The impact motion and payload-landing
performance were analyzed in reference 1. In reference 2 the internal-gas
wave motion was studled and the effects of wave motion were shown to be
lmportant when the square of the ratio of impact veloclty to speed of
sound 1n the gas is not small. In reference 3, the payload-landing per-
formance was calculated including consideration of the required mass of
payload-suspension cords. These studies (refs. 1 to 3) indicated that in
principle the use of an inflated sphere with the payload suspended at its
center could, in fact, attenuate the impact acceleration to within allow-
able limits for hard landing of payloads. Impact velocities in the range
from 500 to 1000 feet per second could be handled with maximum accelera-
tions of the order of only several thousand g's for a sphere with a radius
of the order of 10 feet (ref. 3).



In the previous studies of inflated-sphere impact the skin-stress
distributions were not considered. Calculations were made based on an
initial skin stress with the presumption that the subsequent stresses
during the impact would not exceed the allowable ultimate value. However,
precise Information on maximum values of skin stresses during impact for
various design conditions would be needed In an actual design.

When one considers the ramifications of the elastic wave phenomena
and stress concentrations involved 1n an analysis of the stresses accom-
panying the impact motion of an actual vehicle of the type being studied,
the complexity of the problem becomes evident. It is the purpose of this
investigation to show the development of the stresses and their distribu-
tion during an impact with simplifications to allow a solution of the
problem. Hopefully, the results will show the main features of the
problem and will form a background for more detalled design studies, and
may also serve as a gulde in designing experiments to examine critical
areas.

An analysils of the stresses in two directions at any point in the
skin during the impact is presented. The variocus assumptions and approx-
imations used are discussed prior to proceeding with the analysis. Results
are shown corresponding to those of design cases calculated in previous
reports, including cases in which there is no centrally supported payload
and cases in which a payload 1s suspended in the center by cords. For
the cases of centrally supported payloads, information concerning the
cord-force distributions 1is also presented.

SYMBOLS

=y
a acceleration of the sphere center; 555
a L a

u12

Cvy specific heat of the inflating gas at constant volume
ds area of differential skin element, ABCD (See sketch (c).)
f cord force distribution (eq. (26))
Ee gravitational acceleration on the earth, 32.17 ft/sec2
K proportionality constant (constant in 6 but varilable with time)

for cord force distribution in 6% <6 g'ﬂ (See egs. (39).)
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m total mass of the system

b



£l

<l

Cal C'b

9*

mass of a particular part of the system, depending on the subscript
number of earth g's maximum acceleration

pressure of the inflating gas

DPyP1, Pressure of the atmosphere outside the sphere

iépl, force per unit area from the payload~-suspension cords
attached to the skin

2
D,
radius of the sphere

temperature of the inflating gas

time
dy
velocity of the sphere center, It
u
lug

distance from the impact surface to the sphere center

J

r

defined by equation (29)

arc cos (—?)

ratic of specific heats of the Inflating gas
thickness of the sphere skin

functions of y; defined by equations (34) and (35)
azlmithal angle from the top of the impacting sphere

highest value of 6 for which O has become zero at a given
time

defined by equation (27)

T
initial energy ratio, ;532;&

2
= Il
) 1

mass density



a stress
g skin stress in the dilrection along a meridian
oy skin stress normal to a meridian
Py force in one payload-suspension cord at the sphere skin
1 polar angle (longitudinal coordinate)
O* value at 6 = 6%
Subscripts
o) value at 8 =0
1 condition at the first instant of i1mpact
2 condition at maxlmum compression of the gas which occurs when the
veloclity 1s zero
c paylocad-suspenslon cords
g Inflating gas
P centrally supported payload package
s sphere skin
v portion in motion with velocity u
ANATYSIS

Assumptions and Approximations

In the calculation of the impact motion of an Inflated sphere membrane

(refs. 1 to 3), a norm:l impact with no rotation is assumed. The "uniform
gas" approximation for the internal gas pressure, which was used and
discussed in reference 1, is retained in this analysls. Therefore, the
internal gas pressure i1s a function only of time. The outside pressure

is assumed to be constant at the value pg.

Tt 1s assumed that the skin is flexible and nonstretchable. Then it
is assumed that the part of the sphere skin not in contaet with the impact
surface retains its spherical shape (see ref. 1).

[ VI =l =



Also, because the skin material is assumed to be nonstretchable and
thus to have an infinite modulus of elasticity, changes in stress due to
the relaxation of stress in the meridional direction at the "impact circle"
(6 = o) will propagate through the skin material infinitely fast in com-
parison to the impact speed. Therefore it is assumed that the effects of
stress waves are negligible.

"Membrane theory" of shells 1s assumed to apply in the analysis of
the skin stresses; moreover, it is assumed that the material cannot main-
tain compressive stresses. This is considered to be a very reasonable
assumption for flexible materials, such as fabrics.

As in the prior analyses (ref. 3), the payload suspension cords are
also assumed to be flexible and to have a very high modulus of elasticity.
Therefore the parts of the cords in motion are assumed to have the same
velocity as the sphere center.

The use of a large number of payload suspension cords is assumed,
and the effects of stress concentrations due to cord attachments are neg-
lected. The force from the cords is therefore assumed to be applied
continuously over the skin surface. In the practical case the neglect of
skin-stress concentrations may not be entirely realistic. Nevertheless,
as the number of cords 1s increased, the assumed condition is approached.
The use of the assumption of continuous force distribution enables one to
estimate stresses, how the stresses change during lmpact, and where the
meximum stresses will occur when the cords and payload are present.

Calculation of Skin Stresses

Equations for skin stress along a meridian, 0y, and skin stress
normal to a meridian, Oye= Although several derivations of equations for

stress in a spherical membrane can be found in the literature (e.g.,
refs. 4 and 5), brief, simple deriva-
tions are given here of the appropri-
ate dynamic equations for the applica-
tion to the particular type of motion
of Immediate concern. The tensile
stress in the skin along a meridian
(the meridian plane being perpendicu-
lar to the impact surface) 1s denoted
as 0Og. The tensile stress in the
skin normal to a meridian is denoted
as o, (see sketch (a)). The coordi-
nates 9 and ¥ are, respectively,
the azimuthal angle (latitudinal
coordinate) and the polar angle

Sketeh (a)



(longitudinal coordinate). This notation is used for convenience in

relating the present study to the previous studles of the inflated sphere
landing vehicle in references 1 and 3.

The stress equations are derived by applying Newton's second law of
motion to various elements and portions of the sphere skin. The stresses
dp and oy will thus be obtained in terms of the skin properties, the
acceleration of the sphere, and the force per unit area on the skin
surface.

The meridional stress, oz, can be most easily found by teking as the
free body, to which Newton's law 1s applled, the portion of the skin
included between the pole, point P
on sketch (b), and the angle 6 (i.e.,
the shaded portion on sketch (b)),
because oy 1is the only stress normal
to the boundary of thils free body.

If the mass of this portion of skin
is denoted as mg, then

[

mg = 2mwr2p 8(1 - cos 6) (1)

Newton's law for the vertical motion
of mg dis then

Sketch (b) mge. = Frg - Feg - Fog (2)

where a 1s the acceleration of the skin and of the sphere center, and
where -Fpg, Fog, and Fgg are the downward vertical forces on g due,
respectively, to external and internal gas pressures, tc the payload
suspension cords (in the case of centrally supported payload), and to the
skin stress ogg. These forces are glven, regpectively, by:

)
Fpg =\JF (p - pa)cos 0][2x(r sin 6)r @] = nr2(p - py)sind (3)
o
where p 1s assumed uniform over 6 and p, 1s constant,

6
Fag = EHTZ\/p P, sin & cos @ a6 (&)
o)

H -



where P. 1s the force per unit area from the cords attached to the
skin, and

Fgg = 2nrdoy sin6 (5)

Equation (2) then becomes

5.3 - 6
o/ r\P -p 23 r —
9 - <?1 > a _ U1 - <?l > 12 \/P Po 8In 6 cos 6 &
Pg pSB 2 1l + cos @ pSB sin®6 o (6)

To find oy, the skin stress normal to a meridional plane, Newton's
law may be written for the motion in the radial direction of the element
of skin ABCD, bounded by the two meridians at V - (1/2)aV and ¥ + (1/2)av,
and by the two parallel circles at 6 - (l/E)dQ and 6 + (1/2)d9 (see
sketch (c)). The lengths of the edges of this element are

Sketch (e)
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and the stresses in the skin acting normal to these edges are, respectively,

oy + (1/2)aoy, a5 - (1/2)doy, oy - (1/2)doy, and gy + (1/2)dog. The
componerts of these stresses acting toward the sphere center are,
respectively,

n

B

|
—

“

+
PO

o
&
S

w

}_J.

=]
ZT N
o=

n

},J.

j

O

54
S

o) [°

d09> sin <%-d9>
J

Therefore the radial force on the element ABCD due fto the skin stresses is
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The force per unit area normal to the skin surfece is D - p, - Po- The
surface area of the skin element is

dS = r2sin 6 a8 ar (10)

and hence the radial force on the elemental surface due to gas pressure
and cord forces is (p - Py - pc)dS. The mass of the skin element is

p85 dS and 1ts radial acceleration is (du/dt)cos 6. Newton's law for the
radial motion of the element of skin ABCD then tzkes the form

R =



NI ==

du
pe® a5 = cos 8 = (p - p, - po)dS + ¥y (11)
Equation (11), along with (7), (8), (9), and (10), and the expressions
1 ~
sin.(é—d@)
. 1 .
sin <§ sin 6 d#>

in equations (8) then lead to the following result:

de

2
PO

B3]

MO

sin 6 4v

o oy - - ds
5 9 (p-pa - D) du
— t 5+ = 5 s - Pg S cos 8

(12)

radial surface force 4 radlal acceleration force
unit volume unit volume

which 1s similar to familiar forms of the membrane-shell equation for a
sphere as found in the literature. For present purposes, the following
more convenient form may be written:

a g,
Yo (B 5 o5 - (B 5. - w2 )
o <Os5 (® - P,) 55 Po T MTE o8 8 - 5 (13)

The two equations, (6) and (13), may then be used to calculate oy
and oy at any © and at any time during the impact (where D - Py and
a are functions of time and ﬁé is a function of 6 and time). For
the purpose of calculating oy and o corresponding to the numerical
results calculated previously in references 1 and 3, equations (6) and
(13) may be related to some expressions derived previously. The equation
of motion used in references 1 and 3 is

=18 () (L5 -5 (28)

where

) 7
§-I—Da=<m> - by (15)
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mv=mp+%ms(l+:>_f)+mcv (16)
and
mgeyTy
= 8V (17)
(1/2)m,°

The quantity mey 1s the part of the mass of the payload suspension cords
in motion with velocity u = dy/dt In reference 1 mny was neglected

or assumed to be zero; in the text and appendix of reference 3 expressions
for mey as functions of ¥ were derived for the cases of constant-area
cords and exponentially tapered cords, respectively. An expression for
the gas pressure term in equations (6) and (13) may be obtained by putting
equation (14) into the form:

25) (7 - 7a) = MLE ( > (18)

0gd

Thus equations (6) and (13) may be written:

— = u.237 - L - (plr k/P sin 6 cos 6 @
1 yz 1+ cos 8 sinZQ P.

(19)

o
¥ _ 23 4 By _ (s %
5, = WfE E(l —2) T cos 6 0.5 D, Do (20)

Skin stresses for case of sphere without payload.- In the case of an
infiated nonstretchable sphere membrane containing only the inflating gas
end no centrally supported payload (but possibly having instrumentation
printed on and/or attached to the skin, which is teaken into account in
determining pg), equations (19) and (20) may be used by setting Pa
identically to zero. Thus

<> o= () & - (i) (20

and

oy _ .om T %
¥>mp=o = u;23 Kl - ?2> 7 - cos e} - \\ps>mp=0 (22)

Me=0 Me=0

bt -3 o
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The results from reference 1 for mp = O may be used in the calculation,

since
Iy -
ms =0 -
Me=0

Distribution of cord forces on the skin and skin stresses in sphere
contalning centrally supported payload.- In the cases of impact of the
sphere landing vehicle with centrally supported payload, the terms in
equations (19) and (20) representing the forces from the suspension cords
on the skin remasin to be determined. For some cases the cord-force dis-
tribution is directly related to, and coupled with, the skin-stress dis-
tribution. This relationship must therefore also be derived. As a result
of this derivaticn, the parameter p, which represents the integrated
effect of the cord-force distribution over the sphere, and in terms of
which the results in the previous studies (ref. 3, text and appendix) were
found, will then be determined.

(1L+7) (23)

o[-

The force in one cord at 7 = r (at the skin) is denoted in the text
of reference 3 by the symbol ¢. In the appendix of reference 3, the
symbol ¢' dis used to denote the force in one cord as a function of radial
distance n. ILet ¢, denote elther the ¢ of reference 3 or the value
of @' at n =r iIn the appendix of reference 3. The quantity of
Interest in the equatlons is

plr - Plr NCCPI‘ _ r
(20) 5, = (225) (22 - (&) e -

where N, 1s the total number of payload suspension cords attached to
the skin and hence Ng/bsr2 1s the number per unit area. The forces in
the cords are assumed to be zero before impact. It was shown 1n the text
and appendix of reference 3, for constant-area and exponentially tapered
cords, respectively, that

NP, = <—5—> (mp + mey)af (25)

where f 18 the cord-force distribution over 6:

Pr
£ =X (26)
Pro
and where p 1s defined by
/2
p=f f sin 6 cos 6 & (27)

o}
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Combining equations (24) and (25) and making use =zlso of equation (19)
then yleld the result

Dr-enp-C:E e

\ps6

After substitution of equation (28) and defining

0
z =k/p T sin 6 cos 6 &3 (29)
o]

the stress equations, (19) and (20), become

% ~ >\ my 1 2 w1+ Tz
Pg -\l - y?— mg 1l + cos 8 sinZs | DMs . 2 38 J

O,w:ul2'§j h‘ \I—ﬁc—COSQ-E{E-(li?)}g}'?— (31>
.= S

Bg L 1 - §2/ Mg ‘g

Values of ms/m, 1y, and the functions mv/m and 2, which depend on ¥,
have been calculated previously for several cases in reference 3. The
quantities f, z, and ¢ 1n equations (30) and (31) are, as yet, undeter-
mined for the general case. It 1s shown in reference 3 that, as long as
(GS)O remalns greater than zero, £ i1s given by

f = cos 4 , [0 <9 , (og)g > @]

( B (32)
£ =0, >3

The condition that og be greater than zero at 6 = 0 requires that

IN
U)oy

2y - Oty > 1 (23)

in equation (30), where

=
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and

by = Eu(F) = Hy - £ ; §> (35)

Therefore, if the inequality (33) is satisfied, then equations (27), (29),
and (32) give the following expressions which may be used in equations
(30) and (31) for complete evaluation of %/%zmdcwbstwa'e at a
given value of ¥

N

Il

3 cos 6 ,

T

/z;\
IN
D
IN

Ty
Il
O

> (3€)

For (og), > 0, <

A

()

IA
NGRS NGNS

TN
{{
}__l
1
Q
O
n
w
D
o o
IN
D
IN

TN
i
[
IA
D
IA

where
a = arc cos{-~Y) (37)

For all cases, for some period of time at the beginning of the
impact, (US)O > O so that the inequality (33) holds, and equations (36)
may be used in (30) and (31). In some cases this condition will exist
until t = t3, and thus p, will have the value 1/3. For other cases,
because the maximum force per unit area, or "pressure” from the cords
occurs at 6 = O (egs. (32)), the skin stress at 6 = 0 may be reduced to
zero at some time during the impact as the acceleration incresses. As
explained in reference 3, before (Gs)o becomes zero the upper hemisphere
can be considered to be a rigid shell because it does not flex, and the
cord-force distribution is not affected by the skin stresses; but, after
(Us)o becomes zero, the upper hemisphere can no longer be considered to
be entirely a rigid shell. The cord-force distribution then changes so
that (US)O remalns zero and does not become negative. As the acceleration
increases further after the first instant that (US)O has become zero, the
meridional stress in the skin a small distance from 6 = O also becomes
zero. But (os)o must remaln at zero because if the stress became negative,
the skin would flex, thus reducing the cord force, and the cause of the
reduction in skin stress would be removed. Thus the region of zero
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meridional skin stress grows with increase in acceleration but keeps its
spherical shape. At all points in the upper hemisphere where the skin
stress is still greater than zero, the skin can still be considered to be
a nonflexing rigid shell, and the forces in the cords continue to be dis-
tributed proportional to cos 6 because of the assumption of high modulus
of elasticity In the skin (see ref. 3). Denote 6% as the highest value
of 6 for which the meridional skin stress, og, has become zero. Then,
after (0g), has become zero,

g =0 in 0<0 <6% (38)
but

gg > O in 6% <9 < a
and, as explained above,

T

n

K cos 6 in 6% <06 <

Pla

(39)
f

I

0 for 9 > X
2

Condition (38) will be used to find f in (0 <6 < 6%*). Both %
and K are as yet undetermined; therefore another condltion is needed
along with equatilons (39) to determine 6% and X. It 1is the condition of
continuity of f at 6 = 6%, which can be reasoned as follows: During
the impact the acceleration increases continuously with time, causing the
cord forces to Increase continuously thus reducing the skin stress, ogp, at
a polnt continuously until it becomes zero; that is, until 6%* reaches
that polnt. Therefore oy 1s also continuous over 6 at 6% and hence,
considering equation (30),

f 1s continuous at 6 = @* (L0)

To find £ 1In 0 <6 < 6%, substitute condition (38) into equation
(30). Thus

£, 81026 - 1 + cos 8 - 20 = =0 (41)

Z
vl

vhere {_ and {;, are given by equations (34) and (35). Equation (41)
may then be differentiated with respect to 6 to obtain:

L2 2 (0<6 <o¥) (k2a)

- R
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Directly from equation (41) can be obtained:

£=£a—-s1n2e - (1-cos0), (0<o<o% (42b)
b2k 28 T

As noted above, equations (39) and condition (40) will be used to
evaluate 0% and K for use in the interval 0% <6 < (z/2). An expression
for K/u can be obtained by applying condition (40) to equations (39) and
(Loa):

- L (3)

E; cos 9* ng COSZG*

K.
m
A second expression for K/u can be found by writing equation (27) as

o * . /2 ’
1 =\/P ~ sin 8 cos 6 A +\/p =~ sin 6 cos 6 (44)
o) H 8% W

and by substituting into this equations (39) and (k2a). Thus

It

k__3 [;_f%a *L_*}
T Toasax [1 3t sin29* + ot (1 - cos 6%) (45)

Equations (43) and (45) may then, of course, be combined to solve for
0% as the angle whose cosine is

cos 9% = _§_1; [1 +J1 - 3t,(1 - ba + 2§b)] (L6)

The value of K/u 1s determined by substituting equation (46) into (43).
The quantities of interest in the stress equation are f/p and z/p. From
equations (39),

T

cos 6 , <e* <6< 2£> (47)

=+

vhere K/u 1is known from equations (43) and (46). From equation (29),

* 6
E=<£> +f L sin o cos 6 @ (48)
M M ox
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where, from equation (42b),

Z*_C»a . 1 "
<ﬁ> = 56;—81n26* - EEE (1 - cos 9%) (49)

Substitution of equation (47) into equation (48) gives the result

< > % g) cos36% - cos®9) , (6* <9 < #> (50)

=2

In the interval ﬂ/E <8 < o the expressions for f/p and z/u are,
of course,

£ bl
to, (§§e§a> (512)
Z -1 ZI<6<a (51b)
b ’ 2=" =
It remains to determine y for the cases in which (US)O becomes
zero. By definition, the value of f at 8 =0 1is
fo =1 (52)
Thus
fo 1
= = (53)
(£/n)g  (£/u)g
The result of substituting equation (42a) into (53) 1is
W= _ S , [log), = 0] (5k)
¢, - (1/2)
The parameter K 1s then determined from equations (43) and (54):
1 Ca 1
K = - =
L, - Q/é)<cos 9% 2 cosde*> (55)

To summarize the above development: If, at a glven time or given
value of ¥, the inequality (33) is satisfled, then (US) >0, p = 1/3,
and f/u and z/u  are given by equations (36). TIf the inequality (33) 1is
not satisfied, then (og), = 0, p 1is given by equation (54), is found

o
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from equation (46), K/u from (43), and f/u and z/p are given by
equations (42a), (hob), (47), (49), (50), (51a), and (51b). Thus equations
(30) and (31) are now completely determined and an expression for the
parameter | has been derived.

DISCUSSION OF RESULTS

The complete distribution of skin stress in the 6 and ¥ directions
at all points in the skin and at all times during the Impact can be
obtained from the equations derived in the preceding analysis, both for
cases in which there 1s no centrally supported payload and for cases in
which a paylocad is suspended by radial cords. It is easlly shown from
equation (30) for Ge/ps that, at 6 = a, oz 1is identically zero. This
exhibits the fact that there can be no tensile stress along a meridian in
the skin at the part of the skin in contact with the ground where the
collapse is taking place. It can also be demonstrated by combining the
expressions for Gg/ps and UW/DS (eqs. (30) and (31)) that at 6 = o,

Og = Jy. At 6 = 0, of course, the stress has the same value in any
direction tangent to the skin.

The distribution of skin stress along a meridian, og, over & at
different times during the impact is shown for five different cases in
figure 1. These cases correspond to specific cases for which the impact
motion was calculated in previous studies. For the case of no centrally
supported payload (fig. 1(a)), after the first instant of impact op 1s
highest at 6 = 0 and is zero at 0 = a. As J decreases from 1.0 to
Vo (F= = 0 in this case), (Us/ps)e_o first decreases from 10% ft2/sec2,
then increases to 1.329X108 £t2/sec2. In figures 1(b) through (e) are
shown four cases for which a payload 1s centrally suspended by cords. In
these cases it is seen that dg decreases at all points as the lmpact
progresses. Obviously, one effect of the cord forces is to decrease the
force per unlt area acting normal to the skin and thus to decrease the
stress in the skin, at least in the vertical, or meridional, plane.

Figure 2 shows the distribution of skin stress normal to a meridian,
Oy, over 6 at various times during the impact for the same cases plotted
in figure 1. It 1s seen that the maximum value of oy in the sphere
occurs adjacent to the part of the skin which is collapsing, that is, at
6 = a, and the maximum in time occurs at the end of the impact, when
¥ = V2, for all cases, whether or not there 1s a payload suspended at the
center. Although the maximum values of o are evidently not too greatly
affected by the magnitude of mp/m, or by whether or not a suspended
payload 1s present, they are affected by varying ¥o.

The maximum stress for a glven case is in the V¥ direction (normal

to a meridian) at 6 = ¢ and at ¥ = Fo. Values of (GW/GSl)G—a ey, 8TC
=, J=
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shown in flgure 3 for spheres containing constant-area cords for various
deslgn cases corresponding to uji, as calculated in reference 3 (part (a)
only). The calculations for figure 3 were made from the following
equation, which is derived from equation (31) with the conditions ¥ = ¥,
6 = a, and using the fact that when ¥ = ¥5, u1®8 = (nr)ge:

(), = (e () 22 (56)
=Yz

Evidently the maximum values of og can be quite high -— as high as 5.6
times the initial skin stress — for Jz =0 (fig. 3). The maximum value
of og 1is significantly reduced by having ¥- grester than zero.

As pointed out earlier, the skin-stress distributions and the cord-
force distributions are Interdependent. Therefore, in the process of
solving the skin-stress distributions, the cord-force distributions have
also been determined. In figure 4 are presented examples of the cord-
force distributions over 6 when ¥ = J» for four of the design cases
used in figures 1 and 2, and also for those cases In which the skin stress
at @ = O never reaches zero, that is, the cases where f 1s a cosine
function for the entire process, with the result that p, = 1/3. In
figure 5 the values of o, for the same cases for which maximum stresses
were calculated iIn figure 3(a), are given. From these values of us and
the values of uo(0ez/p,) for which the design parameters were calculated
can be found the appropriate values of ch/pc. It 1s observed from
figure 5 that, for those cases where mp/m is high, puo actually does
approach the value 1/2, as was reasoned physically 1n reference 3.

CONCLUDING REMARKS

It has been shown that the maximum skin stress in a nonstretchable
inflated sphere during impact occurs in a dlrection normal to a meridian
at the Impact circle — that 1s, adjacent to the part of the skin which is
collapsing — at the Instant of maximum compression of the gas and maximm
acceleration of the sphere. The maximum stress depends mainly on the
initial stress, and on the final volume ratio of the impacting sphere (for
no outside atmospheric pressure). When the sphere compresses to a hemi-
gphere, the maximum stress can be five times as large as the initial stress
for the cases considered.

The distributions of stress in the meridional dlrection and stress
normal to a merldian over the sphere are affected by the suspension of a
payload at the center of the sphere. When the distribution of force per
unit area due to the payload suspension cords 1s assumed to be continuous
over the skin, the skin stress along a meridian is found to be greatly
decreased in many cases by the effect of the cord forces. Although the
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shape of the distribution curve of stress normal to a meridian is changed
by the presence of a centrally supported payload, the maximum value is
1little affected.

Ames Research Center

National Aeronautics and Space Administration
Moffett Field, Calif., June 9, 1961
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Figure 3.~ Maximum skin stress (hydrogen inflating gas, Pg = O,
Ty = 500° R, constant-area cords, wz(oca/p,) = 1.6x108
ft2/sec?).
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(b) 0s1/pg = 5%105 ££2/sec?

Figure 3.- Concluded.
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Figure k.- Cord-force distributions (hydrogen Inflating gas, pg = O,
Ty = 500° R, 0g1/pg = 102 £t2/sec?, constant area cords,
up(0ca/p,) = 1.6X108 ££2/sec?).
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Figure 5.~ Values of u, corresponding to design cases (hydrogen inflating
gas, Pg = O, Ty = 500° R, GSJ_/ps = 108 ftz/secz, constant-area cords,
wo(oez/p.) = 1.6X108 £t2/sec?).
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